Petrahedron Letters No.10, pp. 863-867, 1967. Pergamon Press Ltd. Printed in Great Britain.

## INTERNAL ROTATION

ABOUT THE =C-N BOND IN ENAMINES AND THE =N-N BOND IN HYDRAZONES 1)

Albrecht Mannschreck and Ulrich Koelle Institut für Organische Chemie, Universität Heidelberg (Received 30 December 1966)

Resonance structures  $\underline{A}$  and  $\underline{B}$  must be considered for the ground state of enamines <sup>2</sup>). Hindrance of free rotation about the C-N bond is dependent upon the contribution of <u>B</u>. The kinetics of this process have been studied for



ROD-CH=CH-NMe<sub>2</sub> (R = H, C<sub>6</sub>H<sub>5</sub>, OEt) <sup>3)</sup>. For some hydrazones Hafner <sup>4)</sup> has proposed structures  $\underline{C}$  and  $\underline{D}$ , but hindered rotation about the N-N bond in this class of compounds has not yet been reported.

Our  $\Delta G_c^{\ddagger}$  - values evaluated from the <sup>1</sup>H-NMR methyl signals (see table) indicate that the rate of rotation in enamines <u>1</u>, <u>2</u>, <u>3</u>, <u>4</u><sup>5)</sup>, and <u>5</u> depends upon the electron-attracting properties of the substituents. In <u>6</u> and <u>7</u><sup>6)</sup> the benzo ring reduces the rotational barriers by 2 - 3 kcal mole<sup>-1</sup> as compared to <u>8</u> and <u>9</u>. A formyl group raises the free enthalpies of activation by 3 - 4 kcal mole<sup>-1</sup>, as can be seen in the table by comparing <u>6</u> to <u>7</u>, <u>8</u> to <u>9</u>, and <u>9</u> to <u>10</u>. If one of the N-methyl groups is replaced by another substituent, rotational isomers are possible. It will be difficult to separate <sup>7)</sup> such

|          |                                                                            | Solvent                        | $\tau_1, \tau_2$                              | <sup>т</sup> с<br>(°С) | ∆G°<br>(kcal mole <sup>-1</sup> ) |
|----------|----------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------|-----------------------------------|
| 1        | H <sub>5</sub> C <sub>6</sub> C <sub>6</sub> H <sub>5</sub> Me<br>H C-N Me | d <sub>6</sub> -Acetone        |                                               | <-55                   | < 12 <sup>8)</sup>                |
| 2        | EtO <sub>2</sub> C H Me<br>H - N Me                                        | CHCl3                          | 6.9 , 7.2<br>-40°                             | 0                      | 139 <sup>3)</sup>                 |
| 3        | O <sub>2</sub> N H Me<br>H - N Me                                          | CDBr <sub>3</sub>              | 6.71 , 7.06<br>0°                             | +52                    | 165                               |
| 4        | EtO2C CN Me                                                                | CDBr3                          | 6.59 <i>,</i> 6.70<br>+35°, w 15              | +52.5                  | 17.3                              |
| 5        |                                                                            | CDBr3                          | 6.64 <i>,</i> 6.71<br>+35 <sup>c</sup> , w 10 | +60                    | 18.0                              |
| 6        | H Me                                                                       | d6-Acetone                     | 6.74 <i>,</i> 6.85<br>-65°                    | -55.5                  | 10,4                              |
| <u>7</u> | H CHO<br>H Me                                                              | Pyridine/<br>CHCl <sub>3</sub> | 6.96 <i>,</i> 7.09<br>-45°                    | + 7                    | 14.7                              |
| 8        | H C Me<br>H                                                                | d6-Acetone                     | 6.79 <sub>/</sub> 6.92<br>-55°                | -16.5                  | 13.4                              |





isomers even in systems like  $\underline{10}$  or  $\underline{11}$ , since the  $\Delta G_c^{\dagger}$  - values for the isomerization are expected to be only 20.2 or 21.5 kcal mole<sup>-1</sup>. Neither  $\underline{12}$  nor the N,N-dimethylhydrazones of p-nitrobenzaldehyde and benzophenone show significant broadening of the average methyl signal above -65°. However,  $\Delta G_c^{\dagger}$  for the formylated hydrazone  $\underline{13}$  can be measured and is 5.2 kcal mole<sup>-1</sup> lower than the barrier for the corresponding enamine  $\underline{9}$ . From this result we conclude that the dipolar structure  $\underline{8}$  contributes more to the ground state of enamines than  $\underline{9}$  to the ground state of hydrazones.  $\underline{12}$  is gradually decomposed in CD<sub>3</sub>OD/CDCl<sub>3</sub>(3:1) at 60°; under these conditions one ring proton of  $\underline{6}$  is exchanged for deuterium (half-life ~100 hr), whereas two deuterons are introduced into the ring of  $\underline{8}$  (half-life  $\sim 4$  hr), further deuteration of  $\underline{8}$  being slow. Apparently <u>electrophilic substitution</u> is favoured in these enamines in comparison to the less polar, diene-like hydrazone. The positions of the deuterium atoms have not yet been established.

The cis-trans relationships given in the table for the C=C bond in the enamines and the C=N bond in hydrazone  $\underline{13}$  are not strictly proven in all cases. Isomerization at these "double" bonds proceeds more slowly than the above described rotation about the =C-N and =N-N "single" bonds in enamines and hydrazones. This is shown by the formyl protons of  $\underline{10}$  differing in their chemical shifts up to +185° ( $\Delta G_c^{\ddagger} > 25$  kcal mole<sup>-1</sup>) and by the absorption of the ring protons in  $\underline{12}$  resulting in an ABCD spectrum up to at least +150° ( $\Delta G_c^{\ddagger} > 22$  kcal mole<sup>-1</sup>).

Helpful discussions with Professor H.A.Staab are gratefully acknowledged. We also thank Miss A.Mattheus for experimental assistance.

- Part IV of the series "Protonenresonanz-Untersuchungen zur inneren Rotation". Part III: A.Mannschreck, A.Mattheus, and G.Rissmann, <u>J.Mol.</u> <u>Spectroscopy</u>, accepted for publication. Part II: Reference 7).
- See, for example, K.Hafner, K.H.Vöpel, G.Ploss, and C.König, <u>Liebigs Ann.</u> <u>Chem.</u> <u>661</u>, 52 (1963).
- H.E.A.Kramer and R.Gompper, <u>Z.Physik.Chem. (Frankfurt/M)</u> <u>43</u>, 292 (1964) and personal communication.
- 4) K.Hafner, G.Schulz, and K.Wagner, Liebigs Ann.Chem. 678, 39 (1964).
- 5) 4 and 11 were kindly provided by Dr.Mondelli, Milano. Cf. R.Mondelli and L.Merlini, <u>Gazz.Chim.Ital.</u> 95, 1371 (1965).
- 6) M.p.  $\underline{6}$ : 90 91°;  $\underline{7}$ : 160°. U.V.  $\underline{6}$ : 350 mµ (log  $\boldsymbol{6}$  = 4.36), 282 (4.22), 277 (4.23), n-hexane;  $\underline{7}$ : 393 mµ (log  $\boldsymbol{6}$  = 4.48), 254 (4.32), CCl<sub>A</sub>.
- 7) A.Mannschreck, <u>Tetrahedron Letters</u> 1965, 1341.
- 8) Calculated assuming  $\tau_2 \tau_1 = 0.20$  at a temperature below  $-55^{\circ}$ .